» Thevenin’s Theorem

/ Thevenin’s theorem states that a linear two-terminal circuit »
“can be replaced by an equivalent circuit consisting of a Linear
voltage source Vn in series with a resistor Rta, where V1 1s o mpmn :
the open-circuit voltage at the terminals and R is the input or
equivalent resistance at the terminals when the independent
sources are turned o
According to Thevenin’s theorem, the linear circuit in Fig. (a)
can be replaced by that in Fig. (b). The circuit to the left of the
terminals in Fig.(b) is known as the Thevenin equivalent o (2 ;
circuit; it was developed in 1883 by M. Leon Thevenin (1857- 2
1926), a French telegraph engineer. b

circult

The ma_in challenge is how to find the Thevenin equivalent voltage and resistance. |
Thevenin’s theorem is very important in circuit analysis. It hel

may be replaced by a single independent voltage source and a si : ,
. : ngl < T —
technique is a powerful tool in circuit design. gic resistor. This replacement

ps Slmplify a circuit. A iargc circuit



. - . 4 > L : - . .
To apply this idea in finding the Thevenin resistance, we need to consider two cases.

w CASE 1: [fthe network has no dependent source:

(@D md. the Thevenin source voltage by removing the load resistor from the original circuit and
calculating voltage across the open connection points where the load resistor used to be.

(‘2) -l.?md the Thevenin resistance by removing all power sources in the original circuit (voltage
sources shorted and current sources open) and calculating total resistance between the open

connection points.

}I:%]) Dra\'v the .Thevenin equivalent circuit, with the Thevenin voltage source in series with the
1evenin resistance. The load resistor re-attaches between the two open points of the equivalent

circuit. —_—
(4) Analyze voltage and current for the load resistor following the rules for series circuits.
Bl
_ 0 a Li T e

Linear i inear circuit with \ .

ot ferminal o all independent ‘ Ry,

St - sources set equal | b

95 b 10 zero \ b
B
Vih = thc Ry, =Ry
(a) (b)

-

If the network has no dependent sources, we turn off all independent sources. is the input resistance of
the network looking between terminals a and b, as shown in Fig.(b)

m CASE 2: If the network has dependent sources:

i Circuit with

If the network has dependent sources, we turn off all independent |1y dgependent n
y N L all independent V4
sources. As with superposition, dependent sources are not to be | sources set equal o/ Y
turned off because they are controlled by circuit variables. We | tozero TFY |
apply a voltage source Vo at terminals a and b and determine the ' : b
o) hen, Rm= wi/io, as shown in Fig.(a). Ry, = T
current source ip at terminals a-b
tékminal voltage vo. Again R = \a)
will give the same result. In. ———— ~— L G
£ ¢ | C ircuit with f :
: value Of Vo and lo. FOT | 4 jndependent o
. L%
A, or even use unspecified  sources setequal 0 L e
|10 zeTo P o ]




Example 1.8: Find the Thevenin equivalent circuit of the circuit i

&30

6V
b
Solution: To find V1, con51der the c1rcu1t in Fi 1g
' 50 1 230 a
+
OOz
0 b
(a)

. (b)

Ik=i2
i - i1 = L5k

For the supermesh, -6 + 511 +7i=0
From (Nand @), s =40 — 23R :

= 1.5i,—> i2=-2i1 (1)

- 4i, = 5333V



a lincar two-terminal circuit can be replaced by an equivalent circuit
1 with a resistor Rn, where In is the short-circuit current through
alent resistance at the terminals when the independent sources

> Norton’s Theorem

Norton’s theorem states that
consisting of a current source IN in paralle

the terminals and Rx is the input or equiv
are turned ofgj

Thus, the circuit in Fig.(a) can be replaced by the one in Fig.(b)

¢ original circuit and calculating

Steps to follow for Norton’s Theorem:
sistor used to

ent by removing the load resist
the open connec

or from th

(1) Find the Norton source cuir
tion points where the load re

current through a short (wire) jumping across

be.
sources in the original

(2) Find the Norton resistance by removing all power
between the O

shorted and current sources open) and calculating total resistance pen connection points.
current source in parallel with the Norton

ent circuit.

circuit (voltage sources

rton

(3) Draw the Norton equivalent circuit, with the No
o open points of the equival

resistance. The load resistor re-attaches between the tw

e and current for the load resistor following th
g are related by a source transformation.

e rules for parallel circuits.

(4) Analyze voltag
< The Thevenin and Norton equivalent circuit

*

‘Example 1.9: Find the Norton equivalent circuit for the circuit in Fig. 4.42, at terminals a-b.

3Q 3Q
a
15V 4A 6 €2

Solution:

From Fig. (a). Ry = 3+ 3le=3Q

r I

From Fig. (b). In = %(5+4)= 4.5A

C@E | DC Circuits | 1



» Maximum Power Transfer

11 be

er Wi K
, : nt of poW twor
The Maximum Power Transfer Theorem states that the maximum amou e ne

: th
issi - sistance of
dissipated by a load resistance if it is equal to the Thevenin Or Norton re
supplying power.

; 1stance
nin 1€s!
/ ; ]s the Theve
“Maximum power is transferred to the load when the load resistance equa
as seen from the load (Ry = Rm).”
2
V1n
p - lzR L = R R
Ry + £
Ry a P4
VWY O Al o S5 GRS e
b e
Vin i '
| | —.
; 0 Ry, Re

: : ower
For the given circuit above, V' and R are fixed. By varying the load resistance R, th;{) for small
delivered to the load varies as sketched in Fig.We notice from Fig. that t}_‘e poyeras iR A ant to
or large values of Ry but maximum for some value of Ri. between 0 and infinity. We no

. : ; o aximum
show that this maximum power occurs when Ry is equal to Rrh. This is known as the Rth m
power theorem.

Under maximum power conditions, only half the power delivered by the
source gets to the load. Now, that sounds disastrous, but remember that
we are starting out with a fixed Thévenin voltage and resistance, and the
above simply tells us that we must make the two resistance levels equal
if we want maximum power to the load. On an efficiency basis, we are
working at only a 50% level. but we are content because we are getting
maximum power out of our system.

The dc operating efficiency is defined as the ratio of the power deliv-

oad (Py) to the power delivered by the source (P,). That is.




um power transfer in the circuit of Fig. below:

uc of R for maxim
nt Exam)

ind the val
v, [Eastern Refinery Recruitme
3. gz 2 Sl [ed

62

Example 1.10: F

Find the maximum powe

in resistance Ry and the Thevenin voltage

the Thevent
rminals a-b. To get Riwe we use the circuit in Fig.

solution:
we need to find
V' ACross the te

and obtain
612

erh=2+3+6\\12=5+——-—[§“‘=90

60 30 20
W0
R“\
12Q -
(@)
Finding RTh
To get Vrne WE consider the circuit 1n Fig.
analysis gives /
—12 + 18 — 12i,/= 0, i3=-—21\
= —2/3. Applying KVL around the outer 100P

golving for £y, W€ get iy
to get Fin ACroSS rerminals a-b, we obtain
Vin = 2V

For maximum power transfer,
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9.6 Find the Thévenin equivalent circuit for the network in

the network in Fig. 9.26. Then find the current through
i e (O R

. EXAMPLE

“ the shaded area of

R, for values of 2 {1, 10 €, and 100 (1.
R g

\

i RL g  ; foluﬂbn:_ T
okt ;;",St,e;{'z{-.s;]_ a"d2 Thesc prOdu_ce the’ﬁetwork in Fig. 9.27. Note that the load
‘has been removed and the two “holding” terminals have been
 the voltage source E; with R
A o ; with a short-circuit e
g. 9.28(a); where quivalent

e 30)(6 0)
\ :'T;.‘3Q+6Q ¥

.
b




. ortance of the two m“rke.d ‘crmi?nls NOW begins to surface. "
A two terminals acrpss which the Thévenin resistance is meas- 1"
They are g longer the total resistance as seen by the source, ag deter- 30 N it o ¢ 1
cured TS B0 njority of problems of Chapter 7. 1f some difficulty u E
ined N i dejtennining Ry With regard to whether the resistive ele- HEI9Y  RFOD "
dcvclops \ylmcn i pm‘ﬂ"clv consider rCCAIl”lI.]g that the ohmmeter sends
ments nre ¢ sencsm jhto 2 resistive combination and senses the level of = S
out a U‘lcl.(lc Cul'lfc 3o establish the measured resistance level, In Fig. =
the resulting Vf" }‘:‘g current of the ohmmeter: approaches the network i
0.28(b), the 'mcl and when it reaches the junction of R, and R,, it splits pa- 529
through term"“;a:t' that the trickle current splits and then recombines ak Determining En for the ey B
as shown. 1:;: ‘eveals that the resistors are in parallel as far as the ohm-
the lowcl'd’;ng s concerned. In essence, the path of the sensing current of
mc‘c; nr::lcter has revealed how the resistors are connected to the two ter-
,?;nzls of interest and how the Thévenin resistance should be determined.

Remember this as you work through the various examples in this section.
ep 4 Replace the voltage source (Fig. 9.29). For this case, the open-
circuit voltage Ey, is the same as the voltage drop across the 6 () resistor.

; Appl)'i“g the voltage divider rule,

RE,_— (60)0V) 54V _ oy FIG. 9.30

T ROERE  GHLEE O 9 Measuring Exy, for the network in Fig. 9.27.

e
tis particularly important to recognize that Ey, is the open-circuit po-

(ential between points a and b. Remember that an open circuit can have l ,,_
y yoltage across it, but the current must be zero. In fact, the current

through any element in series with the open circuit must be zero also. The R;;

use of 2 voltmeter to measure Ey, appears in Fig. 9.30. Note that it is

jaced directly across the resistor R, since Ex, and Vg, are in parallel. .

siep 5 (Fig. 9:31):
| FIG. 9.31

Substituting the Thévenin equivalent circuit for the
network external to Ry in Fig. 9.26.

e = (N
U

3 » FIG. 9.32
Example 9.7.

he network in

Ry .
NN e

. s 2Q
1 R <40
o b
FIG.9.33

_‘Em;blg'shing the terminals of particular interest for
: _ the network in Fig. 9.32.




ries and the Thévenin re

' \.
. in s€
|| NETWORK THEOREMS st R and Rz3re "
). The sult 17 .
same Jev® of the two ~60
Ry sismnc’smesu : +R2,4ﬂ‘*‘2‘0 ;
a Rix, iy circuit exists b
20 o ince an 9P Ctwee
L see Fig: 9.35. In 1 ca‘s:«c':t js zer0 petwee™ the;e terminals an&
1ep 4 : cu the
R =S40 ™ ;5;‘ e’iwom ot e?) tem?ut](';\rs. e e drop 4T oss R 18: refore,
the 2 resistol fson y
b V2‘[2R2’(0-)R2’0 Q@ — 48V
=2 NG

FIG. 9.34
etermining R for the network in Fig: 9.33.

oV =

+V2=

FIG. 9.35

¢ En, for the nerwork in
t circuit for the network in

the Thévenin €
_Note in this example that

network in Fig.
n of the network to be preserved to be at the

Determinin, Fig. Sé.33.
qmvalen




3 Circuit redrawn:

a 4 QO
R 60 Rn, Ry 2 0 mmp R
“Shon circuited”
= Ry =0 Q 129 =
FIG. 9.39

Determining R, for the network in Fig. 9.38.

W 3: See Fig. 9.39. Steps 1 and 2 are relatively easy to apply, but
w we must be careful to “hold” onto the terminals a and b as the
venin resistance and voltage are determined. In Fig. 9.39, all the
aining elements turn out to be in parallel, and the network can be
Jrawn as shown. ]
(6 Q)(4 O 2450

e S caoa 0T

4: See Fig. 9.40. In this case, the network can be redrawn as shown

fig. 9-41. Since the voltage is the same across parallel elements, the

o¢ across the series resistors R, and R, is E,, or 8 V. Applying the
rm‘ divider rule,

RE,__(6M)BV) 48V

Ep = =48V

R,'+R2 6Q+40 10

Xb

R, 260 Ry Z4Q

g\ = BV Ry 220
Ers R, 7y
e _Ll
FIG. 9.41

Network of Fig. 9.40 redrawn.

FIG. 9.42

Substituting the Thévenin equivalent circuit for the

network external to the resistor Ry in Fig. 9.37.
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p
) n
SQIuﬂOn-' O
(0, 9.44. . -
L il :;glln (his case, the short-circuit replacgmem g5
. See Fig, 9.45.
Step 3: Sce Fig.

rect connection between ¢ anq ., of the y‘”

; di .
Fe v voltage source £ P‘°X"'T§izg" of thie network around the h°rizoni§ﬁ'x:‘ ,
g o 9.45(0). permiting & ULy raion in Fig: 943(0) ing e
- co
[ ol :
- h a =6Q"3‘Q+4QH‘120 50
FIG. 9.44 2 ¢
ldentifying the terminals of particular interest for the , 5}4’
network in Fig. 9.43.
. 5
:
) Ji
FIG. 9.45 _ ,
Solving for Rm for the network in Fig. 9.44, A
Step 4: The circuit is redrawn in Fig. 9.46. Th.e absence of a direct con. 1
nection between @ and b results in a network wn.h three.parallel bfﬂnches.
The voltages V, and V; can therefore be determined using the voltage gi. |
vider rule: j
: E 6 0)(72V 432V 1
= GG Y) =48V !
b R tR, 60+30 Qi .
L RE L (120)(72V) 864V
i N ! b : R 5 V2 = : = = = 54V
JHIGR Rt R, 120 +40 | 16 ‘
+4
! ‘:' a7 R +
y 4 VIR] 60"\ KVL': Rz 12'5Y V2 %
EE = + Ay pi
:. b a
R =3 Ry 240
=2
FIG.9.46
g En, for the network in Fig. 9.44.
' shown for Ep, and applying Kirchhoff's vol*
L the clockwise direction results in
+V,-V,=0
M“m» =54V - 48V =6V
situting %5
i PR




g&venin's thcorc'm is not restricted to a single passive clement, as

wn in the p.rcccch'ng examples, but can be applied acrosg sourt‘:eS‘

v ole prunchc&- PO_NIOHS of networks, or any circuit configuration ns:
Jown in the following example. It is also possible that you may have to
e one of the methods previously described, such as mesh analysis or su-

It % 3
P‘rpommn. to find the Thévenin equivalent circuit.

Py

MPL i :
ﬁ‘ﬁ 'th'E 9.10 (Two sources) Find the Thévenin circuit for the net-
york Within the shaded area of Fig. 9.48.

5alution:

§eps | and 2: See Fig. 9.49. The network is redrawn.
* yiep 3: See Fig. 9.50.
Ry, = Ry + R|||R2||R3
= L4kQ + 0.8kQ[|4kQ | 6 kO
= 1.4kQ + 0.8k 2.4 kQ

= 1.4kQ + 0.6 kO
i Y Y M

§1ep 4: App;:yi;g superposition, we will consider the effects of the volt-
jge source £, first. Note Fig. 9.51. The open circuit requires that V, =
W#1 = (R = 0V, and P

Elmy =V,
| RT=R)||R, =4KkQ|6kQ =2.4Kk0
ApP'Y"’g the voltage divider rule,

R7E,  (24kQ)(6V)
Ry  24kQ + 08kO
R s e R

V3 —

For the source E,, the network in Fig. 9.52 results. Again, V; = LR, =
R, =0V, and
i ‘ Em = V3
R’y = R, || Ry = 0.8 k2] 6 kQQ = 0.706 k(2

R7E, (0.706 k2)(10 V) 7706V

G & =15V
i Vs, Ry +.R, 0706kQ +4kQ 4706

SEU=as = LSWY

E, o410V \
'
‘.
R, Z4 k0
Ry
=NV
1.4 k01
R, = 08k Ry <6k Ry
E,O-6V =
FIG. 9.48

Example 9.10.

Ry
l
R 1.4k a
R, O.BRQZ%“‘Q :
Ry = 6 kQ
-

.z =+
E,%()V Ez?l-(_)v j b

FIG. 9.49
Identifying the terminals of particular interest for the
network in Fig. 9.48. ;

Ry
- M=
Ris 4xa - 1.4 kQ a
Ry S 08k Dbt
Ry S 6kQ | Ry
T b
e s 4
240 T
FIG. 9.50

Determining RT,‘,ifor the network in Fig. 9.49.

-V, +
R4 14 =0)
A S Y
% AT 4
RS 08k Sk =
3 RSOKQ V,  EY,
Ee=06V + +
-2 +
=
FIG. 9.51

Determining the contribution to Er, from the sourc
E, for the network in Fig. 9.49.



Since E'y, and E'p have opposite polarities,

Enp = E'Th — E"n,
= 4.5 V =g ]5 V
=3V (polarity of E;,)

Step 5: See Fig. 9.53. ]

Experimental Procedures

Now that the analytical pmceduré has been de.scribe.d .jn detaj] 2]
for the Thévenin impedance and voltage established, itis time 5 . &

Sene. 1




N

marked terminals (uf the internal resistance of the voltage ang
current sources is i!lchld‘-’d in the original network, it must re, .
s to zero.) Since Ry = Ry, the Proceq, M

when the sources are s€t ; Ocedyy,
and value obtained using the PP roach described for Théveni, 5
roper value of Ry.

theorem will determine the P
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S

&) N

4. Calculate Iy by first returning all sources to their origingl posizi,
and then finding the short-circuit current between the mary, d
terminals. It is the same current that woul'd be measured by an
ammeter placed between the marked terminals.

Conclusion:
the Norton equivalent circuit with the portion of the ¢;,,.

raw : l
¥ ;l;)reviously removed replaced between the terminals of the u
equivalent circuit. :
The Norton and Thévenin equivalent circuits can also be foung fro
each other by using the source transformation discussed earlier i, thig
FIG. 9.61 chapter and reproduced in Fig. 9.60.
Example 9.11. _
R
‘NT ® a
i 30 e
VI, R, 60
[
-l'- ’ FIG. 9.60
FIG Converting between Thévenin and Norton equivalent circuits.
.9.62

Identifying the terminals of particular interest for the
nerwork in Fig. 9.61.

. EXAMPLE 9.11 Find the Norton equivalent circuit for the network iy
the shaded area in Fig. 9.61.

‘Solution: .
Steps 1 and 2: See Fig. 9.62.
Step 3: See Fig. 9.63, and 3

BO)6Q) 180
TR 30+60 9

See Fig. 9.64, which clearly indicates that the short-circuit con-
sen terminals @ and b is in parallel with R, and eliminates its
fore the same as through R,, and the full battery voltage

=;R~_§R|||R2=3Q|l6ﬂ= =20

" FIG. 9.63
Determining Ry, for the

nin’s theorem. A simple conversion indicates
1in fact, the same (Fig. 9.66).

5 5



CTRFVVT WYY W VY VeaTWwviaatey Y oW

R FIG. 9.65
substinuting the Norton equivalent circuit FIG. 9.66
or th 9.
nenwork external to the resistor Ry in Figf9.61,e Converting the Norton equivalent circuit in Fig. 9.65 to a Thévenin

equivalent circuit.

MPLE 9.12 Find the Nort 5 e
2;:1 to the 9 1 resistor in Fig. 3?6?;?““’31%1 circuit for the network ex-

Solution:
sreps 1 and 2: See Fig. 9.68.
Step 3: See Fig. 9.69, and

3 Ryv=Ri+R,=50+40=9Q
Step 4: As shown in Fig: 9.70, the Norton current is the same as the cur-
rent through the 4 Q) resistor. Applying the current divider rule,

RI__ (59)(10A) s0A

=556 A

Iy = - 4
NTRi¥R, " 50+40 9
Step 5: See Fig. 9.71. :

FIG.9.69
Determining Ry for the network in
Fig. 9.68.

FIG. 9.1
Substituting the Norton equivalent circuit for the
network external to the resistor Ry in Fig. 9.67.
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. EXAMPLE 9,13 (Two sources) Find the Non9n equiv. it
' the portion of the network to the left of a-b/in Fig. 9.72. .  for
—e a 10q
R, 40 L
i
+ 4 § 8 A Rz :» 6 :
E =1V :
=T0 FIG.9.72
= i Exainple 9.13.
FIG. 9.73
Identifying the terminals of particular interest for the ~ Solution:
network in Fig. 9.72. Steps Lo d 2: See Fig. 9.73.
' a Step 3: See Fig. 9.74, and
; e (4Q)6Q) 240
RS40 | R e 6 a iy 10 240
1 B
R, 60 g, ‘Step 4: (Using superpbsition) For the 7 V battery (Fig. 9.75),
. : i V
o o S
= = : : R - 4Q
FIG. 9.74 , For the 8 A source (Fig. 9.76), we find that both R, and R, have been
. e : £ ircuited” by the direct connection between a and b, and
Determining Ry, for the network in Fig. 9.73. . g Cteise n
. I'v=1=8A
: Short cirguited a * The result is
T l o \ VL Iy=Ty—TIy=8A— LISA = 625A
R4 G X Step 5: See Fig. 9.77. |
- RR<60 ¢ /I¥ , :
+ . : )
E,-T 7V T
x*
: ot R0 L
" FIG.9.75 240 RZ100
Determining the contribution | 2 E, =12V
i +_|_

‘ Harlau equivalent circuit for the network to the left of
- terminals a-b in Fig. 9.72.

re -

red in the same way as described for the
Thévenin network. Since the Norton and
the same procedures can be followed
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c $54 FIG. 9.84
efining the conditions for maximum power to a
load using the Norton équivalent circuit.

i hanging the load

i sions, the effect of'c . wad L

¢ discus sistance. Looking at the situatiop fror(:&
a

11 of th Vi
Inallo e abo e

cnssed for a fixed Théveni
different viewpoint, : :
if the load resistance is fixed and does ot m;t:: :’}:;:Zpged
Thévenin equivalent resistance then some €, be made (i
(hat the Thévenin equivalen,

possible) to redesign the system 50 i

lie
resistance is closer to the fixed app
situation where the load TeSistang, . -

ther the supply §eclion shoulq he is
atch of resistance levels prre-

ner faces @

In other words, if a desig
tigate whe

fixed, he/she should inves

placed or redesigned to create :h clc;;:‘j m i
i r to the ; :
duce higher levels of powe B e i %

For the Norton equivalent €
be delivered to the load when

9.5y

f : its fullest advantage in the 3 !
This result [Eq. (9.5)] will be used to 118 . analygj
of transistor networks, where the most frequently applied transisto, ci:

cuit model uses a current source rather than a voltage source.
For the Norton circuit in Fig. 9.84, :

g i 9.6)

EXAMPLE 9.14 A dc generator, battery, and laboratory supply are cy,.
nected to resistive load R, in Fig. 9.85..

a. Foreach, determine the value of R, for maximum power transfer to g

b. Under maximum power conditions, what are the current levye] anL(i
the power to the load for each configuration?

c. What is the efficiency of operation for each supply in part (b)?

d. If aload of 1 k() were applied to the laboratory supply, what \.vo 1d
the power delivered to the load be? Compare your answer to the lel\i |
of part (b). What is the level of efficiency? 7

»e". Forcach supply, determine the value of R, for 75% efficiency.

o, SR
oy




for the 12V car battery,

MAXIMUM POWER TRANSFER THEOREN

R.=Rp= R =008 00
for the dc laboratory supply,

Ri.=Rpy=Ru=200
For the dc generator,

Lom SN o E (20 VY
™  4Rp 4R, 4250y " 1kw
For(hel2V car battery, o
o B Y (12 vy

Loan e
4Rm 4R, 4005 Q) ~ T2OW
For the dc laboratory supply,
2
B = eCh SR (G0
4Ry, 4R, 4(20 Q)

= They are all operating under a 50% efficiency level because R, = Ry
d- The power to the load is determined as follows:

20 W

BRUSE. oo 40V o A0V
b= Rn+ R, 20Q+1000Q0 10200 —‘39.22 mA

: aﬁd P, = I2R, = (39.22 mA)*(1000 ) = 1.54 W

_ The power level is significantly less than the 20 W achieved in part
- (b)- The efficiency level is

PL 1.54 W 1.54 W

e AT ° = @ov)(@922mA) 0%
Z LA W 100% = 98.09%
157 W

: u)hich is markedly higher than achieved under maximum power
~ conditions—albeit at the expense of the power level.

or the dc generator,

(1 in decimal form)

9.7

s
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For the laboratory supplys
075200) _ o
R™ 1 =075

isofa transistor network resulted in the rq_

EXAMPLE 9.15 The analysl
duced equivalent in Fig. 9.86.
© a. Find the load resistance that W

i delivered.
d find the maximum power : :
b ;(f)t;lcl‘l;zd\;v:fe c}:an ged to 68 k{2, would you expect a fairly high leye,

Its of part (a)? W
the load based on the results of | )? Whey
[l iiormi tc;r Jevel be? Is your initial assumption vetified?

ill resultin mAximum power transfe,

1d the new poW : '
E:ne.ls-& c ;;c;:e load were changed to 8.2 k), would you expect a fairly high
mple 9.15. ' level of power transfer to the load based on the results of part (z})? Whag
would the new power level be? Is your initial assumption verified?
Solutions:

ource by an open-circuit equivalent results i,
Rai="Ryz=40 k(2
Restoring the current source and finding the open-circuit voltage a

the output terminals results in
Ep = Vo = IR, = (10 mAY40 k() = 400V

a. Replacing the current s

For maximum pbwer transfer to the load,
RL=RTh=40kQ, _'

R

with a maximum power level of
j T AR SR F& ¢ (400.V)>
3 iz : b 4Ry, 4(40kQ)
; " b. Yes, because the 68 k() load is greater (note Fig. 9.80
: il : i ) . 9.80) th
bl : 40 k(2 load, but relatively close in magnitude. ; S
- YT R, R 40KD +68KQ  l0skn ™A
L = (3.7 mA)}(68 kQ = 0.93 W

sower level of 0.93 W
‘@@pﬁon. ‘ compared to the 1 W level of part (a)
5 400V 5 400V
~ 40k0 + 82k a82kn o0 MA
mA)}(8.2kQ) = 0.57 W

0f 0.57 W compared to the 1 W level of part (a)

s fudbadoflsgma i
-= =5 ledtoad8V
‘ pp a
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he © 1g. 9,
- fof ln 2. 9.87, what is the power delivered to the

» nd lost to the internal resistance
IO:M designer has some control over ll‘::‘il:\.;c:"\:\l)my?
E qupp!: what value should he/she make it fo
» joad? What is the maximum power to the lo
W o the level obtained in part (a)?

:\I res'{stnnce level of
adr’r?‘:(‘mum power to
. Ow does it com-
ot making a single calculation, if the desi

v 'ntem“l resistance to 22 () or 8.2 () i S16r could change

o 2 Q, which e

zo re power 1o the load? Verify your conclusi Mg U
P"Wer to the load for each value. on by calculating the

g0l tions: '

E 48 V

B c _ 48V ’
R r 360 +i60 507 2 mA
b = I2R, = (923.1 mA)*(36 Q) = 30.68 W
e I2R, = (923.1 mA)*(16 Q) = 13.63 W

. careful here. The qu'lck_response is to make the source’resistance

equal to the load resistance to satisfy the criteria of the maximpm
power transfer theorem. However, this is a totally different type of
problem from what was examined earlier in this section. If the load
o fixed, the smaller the source resistance R,, the more applied volt-
age will reach the load and the less will be lost in the internal series

. lresileB In fact, the source resistance should be made as small as

% ~possibl

e. If zero ohms were possible for R,, the voltage across the

iy

T WQUId be the full supply voltage, and the power delivered to the ‘ :
 |oad would equal |
V2 (48 V)?
i =60 —v144W'

;'fv)hi ch is more than 10 ;imes the value with a source resistance of

Again, forget the impact in Fig. 9.80: The smaller the source resis-

&

e, the greater the power to the fixed 16 Q load. Therefore, the
esistance level results in a higher power transfer t0 the load

FIG. 9.88
Example 9.17. '

value of R, for
j oad.
;"t»o.me— l FIG.9.89
Determining Ry, for the network external
R, in Fig. 9.88.



:
376 |11 NETWORK THEOREMS

that R oy o 15 O

50 %

i mi

Thévenin voltage is deter :

fi Vi=0V and Voa=hRi=IR,=(6A)100) =60y
Vl =V; =

ned using Fig. 9.90, where

Applying Kirchhoff’s voltage law:
Ep=V,+E=60V + 68V =128V

. Wy B 5 and p
3 + 5: : g V- with the maximum power equal to
2
FIG. 9.90 Bl il & A28V s 47w
Dertermining Ep, for the network external to resistor b 4R 4(15K01)
R, in Fig. 9.88.

9.6 MILLMAN'S THEOREM

Thrqugh the application of Millman’s the'orem,larfxy numberl of para)| A
voltage sources can be reduced to one. In Fxg. 9.9 , for ;xg}-np ;; the thre,
voltage sources can be reduced to one. Tl_us perrmti n 1ngh € Currep
through or voltage across R; without h:clYlng to apply a method syc as
mesh analysis, nodal analysis, superposition, and soon. The theorem can
best be described by applying it to th.e network in Fig. 9,91, BaSlcally,
three steps are included in its application.

N ; FIG. 9.91
‘_l?e.rponstrating the effect of applying Millman’s theorem.

L

! @@ven all voltage sources to current sources as outlined in Sec-
=+ SIS 1s performed in Fig. 9,92 for the network in Fig. 9.91.
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ine par :
. Combine | , allel current sources as described in§
jing petwork is shown in Fig. 9.0, where Section 8.4, The

- . R S
l'l l\ 4 l; + I‘ ﬂn(] (;7 - ()" N (;) " (;
. 3
3: Convert the resulting current source to a v z
. § oltage g I G ’
gingle-source network is obtained, as shown ?ng ;:;:u‘;c& T ¥ p §
\ eral, Millman'’s th RE ’
n s theorem states that o
qolrag® sources, for any number of parallel ¥
I e FIG. 9.93
Eeq e —G—T- = 1 2hLxL* 2 {y Reducing all the cur¥ent sources in Fig. 9.92 to a
r G+ G+ G, + + G single current source.
: 3 N
Eo= TEG 2 E,G, *+ FiGy =
¢ | SO G e ©3) g
et Oy & 1 \
-and-mi : 3 . R =
'h'::‘:tglcu:otr:‘ge:ur::; Sr:g:li appear in Eq. (9.8) to include those cases PG R é
¢ supplying energy i irecti ; : G
(Note Example 9.18.) g gy in the same direction. 2 o \
The equivalent resistance is =T o 1]
.._-C >
9.9) " FIG.9.94
Converting the current source in Fig. 9.93t0a

voltage source.

(9.10)
(9.11)
.A'&"‘.’ 4 S a;
°Z ‘Because of t latively | ‘dj"ect steps required, you may find it y \
easier to apply €: an memorizing and employing Eqgs. :

9.8) thro

int‘l“the current through & :
R - L
" s 7 :

' =
FIG. 9.95
t Example 9.18.
he opposite po- -
erefore that of

and
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-~

TS0 " an 20 __2A-4A+4a
W bt 0.28 4 0258 + 055

9 I STl 1
sntsa’ 20 o
- 2A LAV \
0.958S
: 1 sl s
with Req = 1 1 1 0958,

— — + —
504D 20
The resultant source is shown in Fig. 9.96, and

o 210V B2 VD sy s
£71.050+30 4050
with V. =1IR, = (0.52A)3 Q) = 1.56 V
FIG. 9.96
The resuls of applying Millman 's theorem to the -
network in Fig, 9.95, EXAMPLE 9.19 Let us now consider the type of problem encountere
in the introduction to mesh and nodal analysis in Chapter 8. Mesh, analy.
sis was applied to the network of Fig. 9.97 (Example 8.12). Let y Now
R=1a r,Ten use Millman’s theorem to find the current through the 2 () resistor ang
: compare the results.
+ + k20 Soluti Sop
E, SV E =00 >olutions: : :
_‘[ _T a. Let us first apply each step and, in the (b? s.olutlon, Eq. (9.10), Cén.
X ale - verting sources yields Flg 9.98. comblmng sources and parg|je)
= conductance branches (Fig. 9.99) yields
b FIG. 9.97 i Y
. . 5

Converting the current source t

0 a voltage source (Fij ;
obtain & e (Fig. 9.100), we

Rk 3t @00 w
i GT ZS (3)(7) i
6
B 1 1 G
R S = — =
% Gy 70'

[ WIEN]
w

¥ o
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A

h e . FIG. 9.105
gustzping the effect of knowing a current at some point in a complex network.

9.8 RECIPROCITY THEOREM

s A o : *
. '-l;hfh'::fﬂ::c“y[the:rem is apph‘cable only to single-source networks. It
:i ; ke h, not a theorem used in the analysis of multisource networks
escribed thus far. The theorem states the following:

_ The current I in any branch of a network, due-to a single voltage

_ source E anywhere else in the network, will equal the current
througlf thela brz‘zinch in which the source was originally located if the
source is placed in the branch in which the igi

L i . current I was originally

‘ In other w'ords, the location of the voltage source and the resulting cur-

rent may be interchanged without a change in current. The theorem re-

~ quires that the polarity of the voltage source have the same correspondence
: with the direction of the branch current in each position.

‘ ~ : ". MWA- _ANV “- “YVY My

b 3
Epee—s :
- X G CoYEss
&L : , ll e
| A d 2 b+

(a) : (b)

FIG. 9.106
~ Demonstrating the impact of the reciprocity theorem.

A

ative network in -Fig. 9.106(a), the current I due to the
was determined. If the position of each is interchanged

9.106(b), the current / will be the same value as indi- R,
 the validity of this statement and the theorem, con- Yy
Sig. 0.107, in which values for the elements of Fig. 20
% ; ’: 60 R, Z40
;k_f,-.r)':;120+6nu(2n+4a) 5 . :
Ebgi30=-150 \ Bl
‘ FIG. 9.107

3 A Finding the current | due to a source E.



382

with I 2
; . hich corres onds t ;
T‘J\AR/IV Fr For the network 11 Fig. 5008, ¥ 5 P e Fig
{4t VWA 9.106(b), we find '
20 R7'=R.1""R3+R'“R2
a0 6Q =100
/ R, =60 :4 4Q+20+12-Q“
T
E == 45V [ =,E..-—-—-45V 45 A,
e = .= 100
Interchangi FIG. 9.108 I= M‘L—S——P—Q‘ = é——s—"é' = 1-5 A
o ol e losalfonot biond Lof T8 A nQ+6Q 3
strate the validity of the reciprociry theorem. ety +h the above
which agrees Wi .
4F £ this theorem can best be dem"“‘tra ‘
Strage

The uniqueness and power ©
by considering 2 comp
in Fig. 9.109.

lex, single-source network such as the one g,
shoy,
n

\
|

—MAN—

FIG. 9.109
Demonstrating the power and unigueness of the reciprocity theore
n




