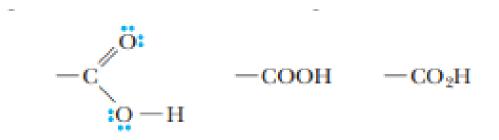
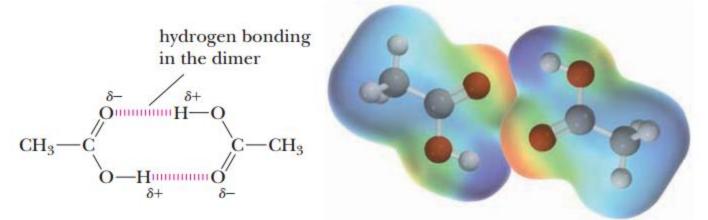

Carboxylic acid


Lecture-1 Rifat Bin Amin Dept. of Biochemistry National Institute of Science & Technology

Carboxylic Acid

What Are Carboxylic Acids?

The functional group of a carboxylic acid is a carboxyl group, so named because it is made up of a carbonyl group and a hydroxyl group. Following is a Lewis structure of the carboxyl group, as well as two alternative representations of it:

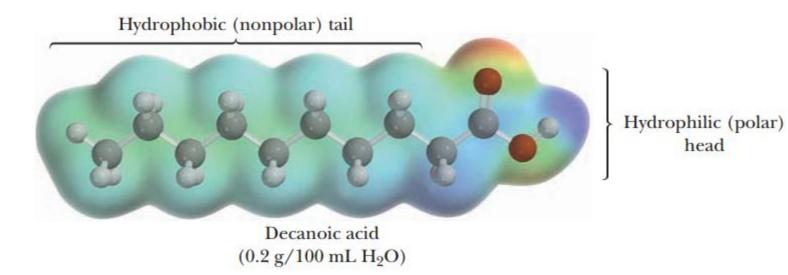

The general formula of an aliphatic carboxylic acid is RCOOH; that of an aromatic carboxylic acid is ArCOOH.

How Are Carboxylic Acids Named?

Structure	IUPAC Name	Common Name	Derivation	
HCOOH	Methanoic acid	Formic acid	Latin: formica, ant	
CH ₃ COOH	Ethanoic acid	Acetic acid	Latin: acetum, vinegar	
CH ₃ CH ₂ COOH	Propanoic acid	Propionic acid	Greek: propion, first fat	
CH ₃ (CH ₂) ₂ COOH	Butanoic acid	Butyric acid	Latin: butyrum, butter	
CH ₃ (CH ₂) ₃ COOH	Pentanoic acid	Valeric acid	Latin: valere, to be strong	
CH ₃ (CH ₂) ₄ COOH	Hexanoic acid	Caproic acid	Latin: caper, goat	
CH ₃ (CH ₂) ₆ COOH	Octanoic acid	Caprylic acid	Latin: caper, goat	
CH ₃ (CH ₂) ₈ COOH	Decanoic acid	Capric acid	Latin: caper, goat	
$CH_3(CH_2)_{10}COOH$	Dodecanoic acid	Lauric acid	Latin: laurus, laurel	
$CH_3(CH_2)_{12}COOH$	Tetradecanoic acid	Myristic acid	Greek: myristikos, fragrant	
$CH_3(CH_2)_{14}COOH$	Hexadecanoic acid	Palmitic acid	Latin: palma, palm tree	
$CH_3(CH_2)_{16}COOH$	Octadecanoic acid	Stearic acid	Greek: stear, solid fat	
$\rm CH_3(\rm CH_2)_{18}\rm COOH$	Icosanoic acid	Arachidic acid	Greek: arachis, peanut	

What Are the Physical Properties of Carboxylic Acids?

In the liquid and solid states, carboxylic acids are associated by intermolecular hydrogen bonding into dimers, as shown for acetic acid:

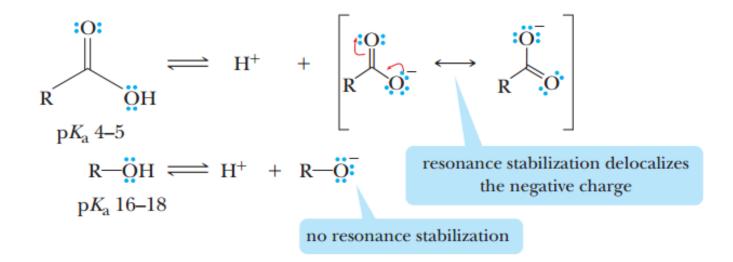


Carboxylic acids have significantly higher boiling points than other types of organic compounds of comparable molecular weight, such as alcohols, aldehydes, and ketones. For example, butanoic acid has a higher boiling point than either 1-pentanol or pentanal. The higher boiling points of carboxylic acids result from their polarity and from the fact that they form very strong intermolecular hydrogen bonds.

Carboxylic acids also interact with water molecules by hydrogen bonding through both their carbonyl and hydroxyl groups. Because of these hydrogen-bonding interactions, carboxylic acids are more soluble in water than are alcohols, ethers, aldehydes, and ketones with comparable molecular weight. The solubility of a carboxylic acid in water decreases as its molecular weight increases. We account for this trend in the following way: A carboxylic acid consists of two regions of different polarity—a polar hydrophilic carboxyl group and, except for formic acid, a nonpolar hydrophobic hydrocarbon chain. The **hydrophilic** carboxyl group increases water solubility; the **hydrophobic** hydrocarbon chain decreases water solubility

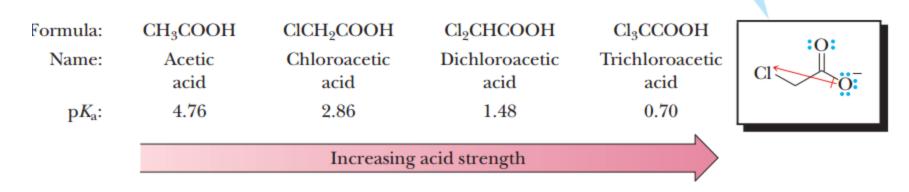
Boiling Points and Solubilities in Water of Selected Carboxylic Acids, Alcohols, and Aldehydes of Comparable Molecular Weight:

Structure	Name	Molecular Weight	Boiling Point (°C)	Solubility (g/100 mL H ₂ O)
CH ₃ COOH	acetic acid	60.5	118	infinite
CH ₃ CH ₂ CH ₂ OH	1-propanol	60.1	97	infinite
CH ₃ CH ₂ CHO	propanal	58.1	48	16
CH ₃ (CH ₂) ₂ COOH	butanoic acid	88.1	163	infinite
CH ₃ (CH ₂) ₃ CH ₂ OH	1-pentanol	88.1	137	2.3
CH ₃ (CH ₂) ₃ CHO	pentanal	86.1	103	slight
CH ₃ (CH ₂) ₄ COOH	hexanoic acid	116.2	205	1.0
$CH_3(CH_2)_5CH_2OH$	1-heptanol	116.2	176	0.2
$\rm CH_3(\rm CH_2)_5\rm CHO$	heptanal	114.1	153	0.1


The first four aliphatic carboxylic acids (formic, acetic, propanoic, and butanoic acids) are infinitely soluble in water because the hydrophilic character of the carboxyl group more than counterbalances the hydrophobic character of the hydrocarbon chain. As the size of the hydrocarbon chain increases relative to the size of the carboxyl group, water solubility decreases. The solubility of hexanoic acid in water is 1.0 g100 g water; that of decanoic acid is only 0.2 g100 g water.

One other physical property of carboxylic acids must be mentioned: The liquid carboxylic acids, from propanoic acid to decanoic acid, have extremely foul odors, about as bad as those of thiols, though different. Butanoic acid is found in stale perspiration and is a major component of "locker room odor." Pentanoic acid smells even worse, and goats, which secrete C6, C8, and C10 acids, are not famous for their pleasant odors.

Carboxylic acids are weak acids. Values of *K*a for most unsubstituted aliphatic and aromatic carboxylic acids. The p*K*a of acetic acid is 4.76


$$CH_{3}COOH + H_{2}O \rightleftharpoons CH_{3}COO^{-} + H_{3}O^{+}$$
$$K_{a} = \frac{[CH_{3}COO^{-}][H_{3}O^{+}]}{[CH_{3}COOH]} = 1.74 \times 10^{-5}$$
$$pK_{a} = 4.76$$

carboxylic acids (pKa 45) are stronger acids than alcohols (pKa 16-18) because resonance stabilizes the **carboxylate** anion by delocalizing its negative charge. No comparable resonance stabilization exists in alkoxide ions



Substitution at the a carbon of an atom or a group of atoms of higher electronegativity than carbon increases the acidity of carboxylic acids, often by several orders of magnitude (Section 2.5C). Compare, for example, the acidities of acetic acid (pKa 4.76) and chloroacetic acid (pKa 2.86). A single chlorine substituent on the a carbon increases acid strength by nearly 100! Both dichloroacetic acid and trichloroacetic acid are stronger acids than phosphoric acid (pKa 2.1):

the inductive effect of an electronegative atom delocalizes the negative charge and stabilizes the carboxylate ion

The acid-strengthening effect of halogen substitution falls off rather rapidly with increasing distance from the carboxyl group. Although the acid ionization constant for 2-chlorobutanoic acid (p*K*a 2.83) is 100 times that for butanoic acid, the acid ionization constant for 4-chlorobutanoic acid (p*K*a 4.52) is only about twice that for butanoic acid:

